ExMiner: An Efficient Algorithm for Mining Top-K Frequent Patterns

نویسندگان

  • Tran Minh Quang
  • Shigeru Oyanagi
  • Katsuhiro Yamazaki
چکیده

Conventional frequent pattern mining algorithms require users to specify some minimum support threshold. If that specified-value is large, users may lose interesting information. In contrast, a small minimum support threshold results in a huge set of frequent patterns that users may not be able to screen for useful knowledge. To solve this problem and make algorithms more user-friendly, an idea of mining the k-most interesting frequent patterns has been proposed. This idea is based upon an algorithm for mining frequent patterns without a minimum support threshold, but with a k number of highest frequency patterns. In this paper, we propose an explorative mining algorithm, called ExMiner, to mine k-most interesting (i.e. top-k) frequent patterns from large scale datasets effectively and efficiently. The ExMiner is then combined with the idea of “build once mine anytime” to mine top-k frequent patterns sequentially. Experiments on both synthetic and real data show that our proposed methods are more efficient compared to the existing ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining the K-Most Interesting Frequent Patterns Sequentially

Conventional frequent pattern mining algorithms require users to specify some minimum support threshold, which is not easy to identify without knowledge about the datasets in advance. This difficulty leads users to dilemma that either they may lose useful information or may not be able to screen for the interesting knowledge from huge presented frequent patterns sets. Mining top-k frequent patt...

متن کامل

TFP-growth: An Efficient Algorithm for Mining Frequent Patterns without any Thresholds

Conventional frequent pattern mining algorithms require some user-specified minimum support, and then mine frequent patterns with support values that are higher than the minimum support. As it is difficult to predict how many frequent patterns will be mined with a specified minimum support, the Top-k mining concept has been proposed. The Top-k Mining concept is based on an algorithm for mining ...

متن کامل

Mining Top-K Periodic-Frequent Pattern from Transactional Databases without Support Threshold

Temporal periodicity of patterns can be regarded as an important criterion for measuring the interestingness of frequent patterns in several applications. A frequent pattern can be said periodic-frequent if it appears at a regular interval. In this paper, we introduce the problem of mining the top-k periodic frequent patterns i.e. the periodic patterns with the k highest support. An efficient s...

متن کامل

TGP: Mining Top-K Frequent Closed Graph Pattern without Minimum Support

In this paper, we propose a new mining task: mining top-k frequent closed graph patterns without minimum support. Most previous frequent graph pattern mining works require the specification of a minimum support threshold to perform the mining. However it is difficult for users to set a suitable value sometimes. We develop an efficient algorithm, called TGP, to mine patterns without minimum supp...

متن کامل

Mining Top-K Frequent Closed Patterns without Minimum Support

In this paper, we propose a new mining task: mining top-k frequent closed patterns of length no less than min `, where k is the desired number of frequent closed patterns to be mined, and min ` is the minimal length of each pattern. An efficient algorithm, called TFP, is developed for mining such patterns without minimum support. Two methods, closed node count and descendant sum are proposed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006